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duction equations with linear and/or nonlinear boundary
conditions can be formulated for the treatment of all theseIn this study the inverse problem of the identification of tempera-

ture dependent thermal properties of a heat conducting body is problems. However, it should be said that simultaneous
investigated. The solution of the corresponding direct problem is requests resulting from combining these inverse problems
obtained using a time marching boundary element method (BEM), are yet to be investigated.which allows, without any need of interpolation and solution do-

Inverse problems are more difficult than their corre-main discretisation, efficient and accurate evaluation of the temper-
ature everywhere inside the space–time dependent domain. Since sponding direct formulated problems because they are ill-
the inverse problem, which requires the determination of the ther- posed; i.e., either existence, uniqueness, or continuous de-
mal conductivity and heat capacity from a finite set of temperature pendence upon the data (stability) are violated. In general,
measurements taken inside the body, possesses poor uniqueness

both the IHCP and BHCP violate stability when unique-features, additional information is achieved by assuming that the
ness is satisfied, whilst the IDHCP is more difficult sincethermal properties belong to a set of polynomials. Thus the inverse

problem reduces to a parameter system estimation problem which the uniqueness problem has to be addressed.
is solved using the nonlinear least-squares method. Convergent and It is the purpose of this study to investigate one of the
stable numerical results are obtained for the finite set of parameters identification problems which requires the simultaneouswhich characterise the thermal properties for various test examples.

estimation of the thermal conductivity and the heat capac-Once the thermal properties are accurately obtained then the BEM
determines automatically the temperature inside the solution do- ity, which are temperature dependent, from boundary and
main and the remaining unspecified boundary values and the nu- initial data and additional interior temperature measure-
merically obtained results show good agreement with the corre- ments. Also, the unknown temperature solution and the
sponding analytical solutions. Q 1996 Academic Press, Inc.

remaining unspecified boundary values are required to
be determined.

Reports of analysis of inverse, nonlinear IDHCP are1. INTRODUCTION
limited in the literature. Theoretical studies, both in steady
and unsteady, linear or nonlinear cases have been investi-Inverse problems in heat conduction have been the point
gated in [9–11]. Numerically, the first step in the inverseof interest for many researchers in recent years. The deter-
analysis is the development of the solution of the corre-mination of the unknown temperature and heat flux at an

inaccessible portion of the boundary, i.e. the inverse heat sponding direct problem and previous works on the subject
(see [7, 12]) have used finite differences. However, theconduction problem (IHCP) (see [1]) and the determina-

tion of the unknown initial temperature, i.e., the backward identification of the thermal conductivity temperature de-
pendence has been investigated using the BEM in [8] onlyheat conduction problem (BHCP) (see [2, 3]) are examples

of typical boundary inverse problems which arise when for the steady case and it is the purpose of this study to
investigate the unsteady nonlinear identification situation.analysing a heat conducting material. Another type of in-

verse problem in heat conduction requires the estimation The advantages of the BEM, in comparison with finite-
difference or finite element methods, are that the BEMof the thermal properties and/or heat source time, spatially

and/or temperature dependent, i.e., the identification heat does not require any solution domain discretisation and,
in addition, no need of interpolation is required whenconduction problem (IDHCP) (see [4–8]). In these inverse

formulations the determination of the boundary or coeffi- evaluating the interior estimated temperature values. Fur-
thermore, the BEM gives in a straightforward manner bothcient unknowns is obtained provided that additional

boundary and/or interior temperature measurements are the remaining unspecified boundary values and the temper-
ature inside the solution domain. All these advantages,available. Steady or transient, linear or nonlinear heat con-
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which result in savings in the computational time and stor- The inversion method has been applied to various test
examples which involve constant, linear or quadratic repre-age requirements, are important in the inverse analysis as

the corresponding solution of the direct problem should sentation of the thermal properties and the numerical re-
sults show good agreement with the analytical solutions.be used many times, iteratively. Also, the principle of the

application of the BEM is not affected by the type of
boundary condition, as is the situation, for example, with

2. FORMULATION OF THE PROBLEMthe finite-difference scheme adopted in [12] which uses
different implementations for Neumann and Dirichlet The mathematical formulation of the one-dimensional,
problems in order to ensure the stability of the method. Fi- transient, nonlinear heat conduction problem in a slab
nally, as the purpose of this study is a first attempt to intro- geometry considered in this study, in nondimensional form,
duce the BEM for solving the nonlinear transient IDHCP, is given by
for simplicity only the one-dimensional, time-dependent
case is investigated, although it should be noted that the ex-
tension of the method to higher dimensions is, in principle, r(T)cp(T)

­T(x, t)
­t

5
­

­x Sk(T)
­T(x, t)

­x D,
straightforward and is the subject of ongoing research by the
authors. A review of the BEM, as applied to direct linear

(x, t) [ (0, 1) 3 (0, 1] (1a)and nonlinear heat conduction problems with linear or non-
linear boundary conditions, can be found in [13]. T(x, t) 5 f0(t) at x 5 0, t [ (0, 1] (1b)

By using the Kirchhoff transformation, the governing
T(x, t) 5 f1(t) at x 5 1, t [ (0, 1] (1c)heat conduction equation reformulates into a useful non-

linear form involving the temperature dependent thermal T(x, t) 5 T0(x) for t 5 0, x [ [0, 1], (1d)
diffusivity coefficient which is solved using a boundary
element time marching technique. Over each small time where T is the temperature, k(T) is the thermal conductiv-
step the resulting nonlinear partial differential equation is ity, r(T) is the density, cp(T) is the specific heat, C(T) 5
linearised by assuming that the variation of the thermal r(T)cp(T) is the heat capacity, f0(t), f1(t), and T0(x) are
diffusivity with temperature is usually not strong, and it is known functions and it is assumed there is no heat genera-
taken to be a constant which is its average mean value at tion inside the solution domain. In expressions (1) the
the beginning of each time step. Although this assumption distance, time, heat capacity, and thermal conductivity
may appear somewhat strong, in practice, many heat con- have been nondimensionalised with respect to l (the length
ducting materials possess a weak dependence of the ther- of the slab), tf (a final time of interest during which a specific
mal diffusivity on the temperature; see [14]. In addition, practical heat conduction experiment is performed), and
although a theoretical investigation of this approximation Cr and kr (reference values), respectively. Further, we as-
is deferred to a future work, the present study also investi- sume that a temperature sensor is installed at an arbitrary
gates numerically how the BEM performs when the prob- spatial position x 5 d [ (0, 1) and temperature measure-
lem is strongly nonlinear. Finally, it should be noted that ments T (m)(t) are recorded in time, namely,
a more general boundary element approach for solving
heat transfer problems is the dual reciprocity BEM (see,

T(x, t) 5 T (m)(t) at x 5 d, t [ (0, 1]. (2)for example, [15]), but its implementation in the inverse
analysis of the identification process has not been yet per-

Then, the IDHCP requires the determination of thermalformed.
properties C(T) and k(T) and the temperature solution T.In the inverse analysis, the thermal properties are not

The first step in the inverse analysis is to develop theknown and therefore the BEM is employed with an itera-
corresponding direct solution for the problem (1), and fortive procedure, with the termination criterion being the
this purpose the BEM is briefly introduced in the nextminimization of the nonlinear least-squares functional.
section. A suitable form for using the BEM consists inFurther, in order to render a unique solution, the function
applying the Kirchhoff transformation which can be ex-estimation problem is reformulated as a parameter estima-
pressed as (see, for example, [16])tion problem by assuming that the thermal properties be-

long to a set of polynomials. In addition, physical positive
constraints and fixing conditions are imposed to the solu- C(T) 5 ET

0
k(T) dT. (3)

tion which minimizes the functional. Once the thermal
properties are accurately estimated, the BEM gives auto-

Denotingmatically, at the final iterate, the temperature everywhere
in the solution domain and the remaining unspecified
boundary values. c(x, t) 5 C(T(x, t)), (x, t) [ [0, 1] 3 [0, 1], (4)
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then Eqs. (1a)–(1d) in the new variable c can be written as value of a is employed to linearise the nonlinear Eq. (5a).
Furthermore, a preliminary study performed in [20] seems
to show that a representative value for the thermal diffusiv-­c(x, t)

­t
5 a(T(x, t))

­2c(x, t)
­x 2 , (x, t) [ (0, 1) 3 (0, 1]

(5a)
ity is related to a regularization effect.

Based on the approximation (8), the use of the funda-
mental solution (7) enables Eq. (5a) to be transformed intoc(x, t) 5 C( f0(t)) at x 5 0, t [ (0, 1] (5b)
the integral equation for each time step [ti21 , ti] (see [21]),

c(x, t) 5 C( f1(t)) at x 5 1, t [ (0, 1] (5c)

c(x, t) 5 C(T0(x)) for t 5 0, x [ [0, 1], (5d) h(x)c(x, t) 5 Eti

ti21

ai c9(0, t)F(x, t; 0, t) dt

where
1 Eti

ti21

ai c9(1, t)F(x, t; 1, t) dt

a(T) 5
k(T)
C(T)

(6)
2 Eti

ti21

ai c(0, t)F9(x, t; 0, t) dt (9)

is the thermal diffusivity. 2 Eti

ti21

ai c(1, t)F9(x, t; 1, t) dt

3. THE BOUNDARY ELEMENT METHOD
1 E1

0
c(y, ti21)F(x, t; y, ti21) dy,

The BEM requires only the discretisation of the bound-
ary of the solution domain under investigation into a series where (x, t) [ [0, 1] 3 [ti21 , ti], primes denote differentia-
of elements similar to those used in finite elements but tion with respect to the outward normal, and h(x) is a
with one degree of dimensionality less. If, in addition, a coefficient function which is equal to 1 for x [ (0, 1) and
fundamental solution for the governing partial differential 0.5 if x [ h0, 1j.
equation is available then the problem may be reformu- A constant BEM approximation of Eq. (9), assuming
lated in an integral representation form involving only that the temperature and the heat flux are constant over
boundary solution domain integrals. each time element, can be written in the form

If the thermal diffusivity is constant, i.e., a(T) ; a ;
constant, then for the partial differential Eq. (5a), a funda-

h(x)c(x, t̃i) 5 c9(0, t̃i) Eti

ti21

ai F(x, t̃i ; 0, t) dtmental solution is available (see, for example, [17]),

1 c9(1, t̃i) Eti

ti21

ai F(x, t̃i ; 1, t) dtF(x, t; j, t) 5
1

(4fa(t 2 t))1/2

(7)
2 c(0, t̃i) Eti

ti21

ai F9(x, t̃i ; 0, t) dt (10)
exp S2

(x 2 j)2

4a(t 2 t)DH(t 2 t),

2 c(1, t̃i) Eti

ti21

ai F9(x, t̃i ; 1, t) dt
where H is the Heaviside function and j and t are generic
space and time variables, respectively.

1 ON0

j51
c( ỹj , ti21) Eyj

yj21

F(x, t̃i ; y, ti21) dy,In the case of nonconstant thermal diffusivity the use of
the fundamental solution (7) should be accompanied by a
time marching technique in which a(T) is assumed constant

where t̃i 5 (ti21 1 ti)/2 is the midpoint of the element [ti21 ,at the beginning of each time step. Therefore, starting from
ti] and ỹj 5 (yj21 1 yj)/2, for j 5 1, N0 , are the midpointsthe initial time t0 5 0, over each time element [ti21 , ti], i.e.,
of the elements [yj21 , yj] which are used to discretise thetime step, the value of a is taken as the mean average,
segment [0, 1] into N0 elements. The integrals in Eq. (10)namely,
are calculated analytically; see [22]. Although the last term
in Eq. (10) has resulted from discretising a space domain

ai 5 a(T) 5 E1

0
a(T(x, ti21)) dx. (8) integral this term is evaluated analytically and, therefore,

no additional computational time is required.
Since only the temperature is prescribed at each bound-Previous works on the subject (see [18, 19]) also assumed

that the variation with T of the function a(T) is weak, i.e., ary point, Eq. (10) can be used to calculate the unknown
boundary values for the heat flux. In order to do this, wethe domain integrals due to the gradients of the thermal

diffusivity can be neglected, and that some kind of mean let the point x tend to 0 and to 1, obtaining two integral
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equations which produce a system of two linear, algebraic By requiring that the continuous functions C(T) and k(T)
be determined from only a finite set of data, as given byequations with two unknowns. The solution of this system

of equations provides the values of the transformed heat expression (12), will nevertheless result in a nonunique
solution problem. In order to be able to achieve a uniqueflux on the boundaries x 5 0 and x 5 1, namely c9(0, t̃i)

and c9(1, t̃i), which then can be used in Eq. (10) for calculat- solution the unknown thermal property functions C(T)
and k(T) should be parameterised and thus reduce theing the transformed temperature function c at any point

inside the layer [0, 1] 3 [ti21 , ti]. Once the values of c are problem from an infinite-dimensional, functional estima-
tion problem to a finite-dimensional, parameter estimationobtained, the temperature T is calculated by inverting the

transformation (4), namely, problem. In this study, the parameterisation is performed
by assuming that the functions C(T) and k(T) belong to
a finite-dimensional space of functions F which is taken asT(x, t) 5 C21(c(x, t)), (x, t) [ [0, 1] 3 [ti21 , ti]. (11)
the set of polynomials,

In particular, the values of c at t 5 ti , namely c( ỹj , ti), for
j 5 1, N0 , need to be calculated in order to provide the F 5 Hf ; f(T) 5 OL

i51
biT i21; L $ 1J. (13)

‘‘initial’’ condition at the time ti and to proceed to the next
time step [ti , ti11]. Also the corresponding values of the
temperature, T( ỹj , ti), for j 5 1, N0 , are required in order Piecewise linear or quadratic space functions may also be
to calculate the new constant value of the thermal diffusiv- introduced (see [23]), but this approach will be investigated
ity ai11 , given by expression (8) at the time ti11 . At this in another study.
stage it should be noted that the BEM procedure over If C(T) and k(T) [ F then
each time step has used a significant computational time
only in the inversion of a 2 3 2 matrix. However, using

C(T) 5 OL
i51

CiT i21 (14a)the finite-difference method for the same situation requires
the inversion of a N0 3 N0 sparse matrix.

Based on this time marching technique, the BEM pro- k(T) 5 OL
i51

kiT i21 (14b)
vides the values of c and T at any point in the solution
domain and, in particular, the calculated values of the
temperature at x 5 d, T (c)(t), where the sensor is located, and the least-squares norm in discretised form becomes
are of special interest for the inverse analysis explained in
the next section. Furthermore, the BEM does not require

S(C, k) 5 ONT

i51
[T (m)

i 2 T (c)
i (C, k)]2, (15)any modification in its principle when it is applied to other

types of boundary conditions or when it is extended to
higher dimensional geometries.

where C 5 (Cj), k 5 (kj), for j 5 1, L, are the unknown
vectors of the thermal conductivity and heat capacity, as

4. IDENTIFICATION OF THE THERMAL PROPERTIES given by expressions (14), and T (c)
i (C, k) is the calculated

value of the temperature at t 5 t9i , for i 5 1, NT , obtained
If the thermal properties C(T) and k(T) are unknown

from the BEM solution of the direct problem, as described
then the BEM, as explained in Section 3, should be used,

in Section 3, by using the estimated values of the unknown
along with an iterative procedure. Also, if the IDHCP is

parameters (C, k).
linear, i.e., C and k are constant, then the BEM is exactly

As will be seen later in Section 5 when the numerical
formulated and no further transformation (3) is needed.

method will be experimented for several values of NT in
Initial guesses of C(T) and k(T) will produce a solution

the Example 5.1, in expression (15) the number of measure-
for the temperature at x 5 d, T (c)(t), which is then com-

ments should, in general, be equal or exceed the number
pared with the measured values T (m)(t) given by expression

of unknowns and this fact is consistent with the numerical
(4). This comparison is based on minimizing the least-

experiments from [24] for the estimation of spatially vary-
squares norm iT (c) 2 T (m)i2 which is very natural by min-

ing thermal properties.
imizing the gap between the computed and the measured

Additional physical constraints are imposed, namely,
values and also guarantees the existence of the inverse so-
lution.

C(T) $ 0, k(T) $ 0. (16)In practice, only a finite set of time measurements may
be available at some discrete times, t9i , for i 5 1, NT , namely

Temperature dependent uniqueness conditions applicable
to the problem of estimating C(T) and k(T) are very diffi-

T(d, t9i ) 5 T (m)(t9i ) 5 T (m)
i , i 5 1, NT . (12) cult (see [9–11]) and in order to be able to obtain a unique
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solution, C(T) and k(T) have to be fixed at some points. d [ (0, 1) do not significantly affect the accuracy of the
results. The distance d is important in the sensitivity analy-This restriction should ensure uniqueness of the estimated

thermal property parameters and this will be discussed sis of the IHCP (see [29]), but not in the IDHCP. Further,
for the IDHCP the Fourier number L 5 d(ar Dt*)21/2 doesfurther in Section 5.

Finally, the stability of the solution is ensured since the not seem to be meaningful as the distance d should be
related to an active boundary which does not appear innumber of independent parameters which are to be esti-

mated, i.e., the dimension of the space F, is, in general, the formulation of the IDHCP considered in this study.
That is to say that the IHCP is a boundary inverse problem,small and no further regularization term is needed in the

expression for the functional (15); see also [25]. The mini- whilst the IDHCP is a coefficient identification (inverse)
problem.mization of the nonlinear least-squares functional (15),

subject to the positivity constraints (16) and to the addi- For exact measured data T (m)(t), in order to test the
accuracy and convergence of the numerical method, thetional fixing conditions, is solved using the NAG routine

E04UCF (see [26]) which minimizes an arbitrary smooth examples are analysed for various numbers of time mea-
surements, NT [ h1, 2, 4, 5, 10, 20j, and/or various timefunction subject to certain constraints which may include

simple bounds on variables and linear or nonlinear con- steps, Dt [ h0.025, 0.05, 0.1j. For the alloy of steel material,
this corresponds to the boundary temperature being knownstraints. At this stage it should be noted that other methods,

such as the Levenberg–Marquad method of minimization from Dt* [ h9, 18, 36j s and temperature measurements
being recorded at various sampling rates of Dt9* [ h360,and the iterated conjugate gradient method (see [7, 27])

would have been more effective and cheaper in computa- 180, 90, 72, 36, 18j s. It should be noted that all these
physical and technical quantities are practically realistictional time, since they are to be supplied by the user.

However, in this study the minimization with constraints and they are of the same order as those considered in the
simulated tests performed in [12].implemented in the NAG routine has been preferred as

it was easy to use, is robust and reasonably efficient since Also, in order to test the stability of the numerical
method that one has employed, various amounts of noise,it is based on a sequential quadratic programming method

developed in [28]. p% [ h0, 2, 4, 6, 8j, are included in the measured data
T (m)(t) at x 5 d.

5. NUMERICAL RESULTS AND DISCUSSION
EXAMPLE 5.1. Initially, we consider a simple test exam-

ple in whichThe numerical inversion method for the identification
of the thermal conductivity and the heat capacity, as de-
scribed in the Sections 3 and 4, has been applied to various C(T) 5 1, k(T) 5 k1 1 k2T, (18a)
test examples in which the space F is the set of constant,

f0(t) 5 «t, f1(t) 5 1 1 «t, T0(x) 5 x,
linear or quadratic functions. Also the identification proce-
dure provides simultaneously the temperature inside the T (m)(t) 5 0.5 1 «t, (18b)
solution domain and the boundary heat flux.

In all the examples performed in this section we will where « . 0 is an arbitrary preassigned constant and k1
interpret the results obtained by considering the material and k2 are constant coefficients to be determined.
to be an alloy of steel with a reference thermal diffusivity At this stage, we note that although the linear depen-
ar 5 kr /Cr 5 1025 m2/s, of length l 5 0.06 m, and subject dence of k(T) with T given by expression (18a) may appear
to a heat conducting experiment over a period of time very simple, many materials possess such a linear variation
tf 5 360 s. The boundary temperature is assumed to be of their thermal conductivity with the temperature over a
known from large temperature range (see, for example, [14]).

With the data (18) it is required then to numerically
solve the problem (1), which possesses the analytical so-Dt* 5 t*i11 2 t*i 5 tf(ti11 2 ti) 5 tf Dt (s) (17a)
lution

whilst temperature measurements at x* 5 d* 5 dl 5 0.03 m
are recorded at a sampling rate of T(x, t) 5 x 1 «t, C(T) 5 1, k(T) 5 k1 1 «T. (19)

From expression (19) it can be seen that in order to obtainDt9* 5 t9*i11 2 t9*i 5 tf(t9i11 2 t9i ) 5 tf /NT (s). (17b)
a unique solution, k(T) should be fixed at one point and
we have set, for convenience,Also, in all the test examples presented in this section the

value of d at which the temperature sensor is located was
taken to be equal to 0.5, although alternative choices of k(0) 5 k1 5 1. (20)
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TABLE I

The Numerical Results for k2 and the Objective Values Obtained Using a Time Step Dt 5 0.05 for Various Values of
« [ h0.5, 1, 2j and NT [ h1, 2, 4, 5, 10, 20j for Example 5.1

Dt 5 0.05 NT 5 1 NT 5 2 NT 5 4 NT 5 5 NT 5 10 NT 5 20 Analytical «

k2 0.50259 0.50276 0.50266 0.50259 0.50239 0.50221 0.5
1.02571 1.02216 1.02093 1.02059 1.01971 1.01913 1
2.53260 2.27088 2.20619 2.19715 2.18288 2.17685 2

S(C, k) 0.1E-25 0.5E-10 0.18E-8 0.58E-8 0.77E-7 0.53E-6 0
0.1E-22 0.47E-7 0.89E-7 0.12E-6 0.47E-6 0.24E-5 0
0.1E-25 0.13E-4 0.28E-4 0.34E-4 0.63E-4 0.12E-3 0

In developing the BEM, both in the direct and inverse adopted throughout as this was found to be sufficiently
large to ensure the accuracy of the results. A larger valueanalysis, we need the generic form of the Kirchhoff trans-

formation C(T), given by expression (3), which for the of NT will not significantly improve the results and, in
addition, there might be practical limitations in the periodparticular form of the thermal conductivity given by ex-

pression (18a), results in of the time sampling measurements, Dt9*, that can be taken
by a sensor installed inside a heated conducting body.
Finally, although for « 5 2 the relative error for NT 5 10C(T) 5 k1T 1 k2T 2/2. (21)
is still large, about 9%, better agreement with the analytical
solution may be achieved by decreasing the time step,Also, in order to calculate the original temperature distri-

bution T, using expression (13), Eq. (21) is inverted to give Dt, i.e., by decreasing the sampling rate Dt* at which the
boundary temperature is assumed to be known.

Table II shows the numerically obtained results for k2C21(c) 5 ((k2
1 1 2k2c)1/2 2 k1)/k2 . (22)

for various values of « [ h0.5, 1, 2j and for various time
steps Dt [ h0.025, 0.05, 0.1j. It can be seen that as the timeIn inverting Eq. (21) only the positive root was selected

since the negative root leads to a value of T which corre- step decreases in size, the numerical results converge to
the analytical value of k2 and also the objective values tendsponds to a negative thermal conductivity, which has no

physical meaning. If an analytical inversion of Eq. (21) is to zero. Also, as the value of « decreases, then the rate of
convergence to the analytical solution improves. This is tonot possible then a numerical technique has to be em-

ployed. be expected since as « decreases the problem becomes less
nonlinear. For « 5 2 the enhanced decrease in the relativeTable I shows the numerical results obtained for k2 using

a constant time step Dt 5 0.05 for various values of « [ error is from 44% for Dt 5 0.1, to 9% for Dt 5 0.05,
and to 2% for Dt 5 0.025. From this discussion it can beh0.5, 1, 2j and various numbers of time measurements

NT [ h1, 2, 4, 5, 10, 20j. Also, in all the tables shown in concluded that if the time step is sufficiently decreased,
the numerical method based on the BEM approach, maythis section the optimal values of the objective function,

S(C, k), given by expression (15), which is minimized and
the analytical values are included. From Table I it can

TABLE IIbe seen that as the number of time measurements, NT ,
increases the agreement between the analytical and numer- The Numerically Obtained Results for k2 and the Objective

Values for Various Values of « [ h0.5, 1, 2j and Time Stepsical values of k2 improves as more constraint information
Dt [ h0.025, 0.05, 0.1j for Example 5.1is imposed on the solution of the inverse problem. This

improvement is much enhanced for the situation when
Time step Dt

« 5 2, where the relative error decreases from about 25%
for NT 5 1 to about 9% when NT 5 20. As the value of « NT 5 10 0.1 0.05 0.025 Analytical «

decreases, i.e., the thermal diffusivity dependence on the
k2 0.51413 0.50239 0.50082 0.5temperature becomes weaker, the relative error and the

1.09421 1.01971 1.00584 1objective value, S(C, k), for a fixed value of NT , decrease.
2.88493 2.18288 2.04357 2

The number of time measurements should exceed, in gen-
S(C, k) 0.13E-5 0.77E-7 0.78E-8 0eral, the number of unknowns and, since in all the examples

0.21E-4 0.47E-6 0.15E-7 0
tested in this section the number of parameters to be esti- 0.17E-2 0.63E-4 0.73E-4 0
mated is less than four, a typical value of NT 5 10 was
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TABLE IIIbTABLE IIIa

The Numerical Results for the Temperature at Some Interior The Numerical Results for the Temperature at Some Interior
Domain Points Obtained Using the Time Steps Dt [ h0.025, 0.05,Domain Points Obtained Using the Time Steps Dt [ h0.025, 0.05,

0.1j for Example 5.1 when « 5 0.5 0.1j for Example 5.1 when « 5 1

Time step DtTime step Dt

x t 0.1 0.05 0.025 Analytical x t 0.1 0.05 0.025 Analytical

0.2125 0.2 0.40871 0.41332 0.41525 0.41250.2125 0.2 0.31074 0.31283 0.31364 0.3125
0.4125 0.2 0.51196 0.51284 0.51299 0.5125 0.4125 0.2 0.60919 0.61272 0.61359 0.6125

0.6125 0.2 0.80458 0.80956 0.81077 0.81250.6125 0.2 0.71021 0.71156 0.71179 0.7125
0.8125 0.2 0.90643 0.90983 0.91105 0.9125 0.8125 0.2 0.99702 1.00573 1.00897 1.0125

0.2125 0.4 0.60759 0.61242 0.61444 0.61250.2125 0.4 0.41044 0.41264 0.41351 0.4125
0.4125 0.4 0.61164 0.61272 0.61293 0.6125 0.4125 0.4 0.80848 0.81244 0.81335 0.8125

0.6125 0.4 1.00439 1.00978 1.01108 1.01250.6125 0.4 0.80998 0.81153 0.81182 0.8125
0.8125 0.4 1.00630 1.00983 1.01110 1.0125 0.8125 0.4 1.19705 1.20598 1.20932 1.2125

0.2125 0.6 0.80673 0.81181 0.81386 0.81250.2125 0.6 0.51028 0.51252 0.51340 0.5125
0.4125 0.6 0.71155 0.71268 0.71290 0.7125 0.4125 0.6 1.00805 1.01228 1.01320 1.0125

0.6125 0.6 1.20435 1.20998 1.21132 1.21250.6125 0.6 0.90996 0.91156 0.91186 0.9125
0.8125 0.6 1.10631 1.10986 1.11115 1.1125 0.8125 0.6 1.39716 1.40617 1.40957 1.4125

0.2125 0.8 1.00596 1.01132 1.01342 1.01250.2125 0.8 0.61014 0.61241 0.61331 0.6125
0.4125 0.8 0.81147 0.81266 0.81287 0.8125 0.4125 0.8 1.20757 1.21213 1.21309 1.2125

0.6125 0.8 1.40419 1.41009 1.41149 1.41250.6125 0.8 1.00995 1.01159 1.01190 1.0125
0.8125 0.8 1.20631 1.20989 1.21119 1.2125 0.8125 0.8 1.59716 1.60629 1.60974 1.6125

deal with stronger nonlinearities when the thermal diffusiv- other points near the boundary x 5 0 this convergence does
not appear straightforward and this is probably because inity varies linearly with the temperature. This is probably

because for this test example the approximation of a(T), the nonlinear formulation of the BEM domain integrals
due to the gradients of the thermal diffusivity, which maywith its mean average value given by expression (8), im-

proves as the time step decreases. At the final iteration at not necessarily decay to zero at all the domain points as
which the thermal properties have been determined, to
within some specified accuracy, the time marching BEM
provides also the temperature field inside the solution

TABLE IIIcdomain.
Tables IIIa, IIIb, and IIIc show the numerical results for The Numerical Results for the Temperature at Some Interior

the temperature at some interior domain points obtained Domain Points Obtained Using the Time Steps Dt [ h0.025, 0.05,
0.1j for Example 5.1 when « 5 2using the BEM time marching technique with various time

steps Dt [ h0.025, 0.05, 0.1j in comparison with the analyti-
Time step Dtcal solutions for « 5 0.5, 1, and 2, and k1 5 0.50082, 1.00584,

and 2.04357 (see Table II), respectively. It can be seen x t 0.1 0.05 0.025 Analytical
that the agreement between the numerical results and the

0.2125 0.2 0.59900 0.61161 0.61623 0.6125analytical solution is very good and this illustrates that the
0.4125 0.2 0.79621 0.81047 0.81429 0.8125BEM solution of the direct problem is stable with respect
0.6125 0.2 0.98663 1.00456 1.00979 1.0125

to thermal conductivity data. The stability is suggested by 0.8125 0.2 1.17321 1.19662 1.20554 1.2125
the fact that although the values of k2 are in relative error 0.2125 0.4 0.99465 1.00891 1.01365 1.0125

0.4125 0.4 1.19428 1.20974 1.21363 1.2125by about 0.1%, 0.5%, and 2% from their exact values for
0.6125 0.4 1.38653 1.40527 1.41063 1.4125« 5 0.5, 1, and 2, respectively, see Table II, these errors
0.8125 0.4 1.57369 1.59747 1.60641 1.6125do not amplify but are damped when calculating the tem-
0.2125 0.6 1.39033 1.40698 1.41222 1.4125

perature distribution inside the solution domain. In all 0.4125 0.6 1.59123 1.60866 1.61310 1.6125
Tables III it can be seen that the numerical results for the 0.6125 0.6 1.78485 1.80503 1.81085 1.8125

0.8125 0.6 1.97301 1.99759 2.00671 2.0125temperature at all the selected points increase as the time
0.2125 0.8 1.78645 1.80539 1.81128 1.8125step decreases. This monotonic increasing sequence of nu-
0.4125 0.8 1.98802 2.00746 2.01263 2.0125merically obtained temperature results appears to con-
0.6125 0.8 2.18265 2.20440 2.21082 2.2125

verge to the corresponding analytical values for points 0.8125 0.8 2.37182 2.39737 2.40678 2.4125
situated, in general, away from the boundary x 5 0. At
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TABLE IV for various time steps, Dt [ h0.025, 0.05, 0.1j. It can be
seen that the numerical values of k1 , k2 , and k3 convergeThe Numerical Results for k1 , k2 , and k3 and the Objective
towards their corresponding analytical values as the timeValues for the Time Steps Dt [ h0.025, 0.05, 0.1j for Example 5.2
step decreases. Also, it is observed that the objective values

Time step Dt appear to converge towards zero.
Figures 1a and 1b show the numerically obtained resultsNT 5 10 0.1 0.05 0.025 Analytical

for the heat flux at the boundaries x 5 0 and x 5 1,
respectively, in comparison with the corresponding analyti-k1 5.73E-3 4.09E-3 3.79E-3 0

k2 0.49238 0.49549 0.49612 0.5 cal solutions for the time steps Dt [ h0.025, 0.05, 0.1j. In
k3 0.06436 0.06290 0.06257 0.0625 Fig. 1a the heat flux at x 5 0 is infinite as t tends to zero
S(C, k) 0.45E-7 0.13E-8 0.77E-9 0 and the BEM predicts this behaviour as the time step

decreases. The numerical solution, represented by symbols
calculated at the nodes of each time element, appears to
lie on the analytical curve, as shown in Fig. 1a, but because

the time step tends to zero, have been neglected. However, of the large scale used for the heat flux, q(0, t), we show
the BEM approach is more than reasonable since, from in Fig. 1b the boundary heat flux q(1, t). It can be observed
all the values of the nonlinearity coefficient « and all the that there is an approximately constant relative error of
time steps considered in Tables III, the numerical estima- about 1% between the numerical and analytical solutions.
tion of the interior temperature agrees to within 1–2% This error does not diminish as the time step decreases in
with the analytical solution. size and is not caused by errors in the calculated values of

k1 , k2 , and k3 as the direct numerical solution with exactEXAMPLE 5.2. In the second test example we consider
values for these coefficients, represented by the dotteda higher (quadratic) temperature dependence for the ther-
line, shows. This inconsistency is probably because in thismal diffusivity, namely, we take
test example the thermal diffusivity depends more than
weakly on the temperature and therefore the domain inte-C(T) 5 1, k(T) 5 k1 1 k2T 1 k3T 2 (23a)
grals involving the gradients of a(T) are significant. Al-

f0(t) 5 (t/2)1/2, f1(t) 5 (4 1 t/2)1/2, T0(x) 5 2x 1/2, though the BEM formulation itself is approximate in the
nonlinear transient case with thermal diffusivity tempera-T (m)(t) 5 (2 1 t/2)1/2, (23b)
ture dependence (see [31]), this approximation is still rea-
sonable as it estimates, to within about 1%, the analyticalwhere k1 , k2 , and k3 are constant coefficients to be deter-
solution (see also Example 5.1). In addition, in the well-mined.
posed direct problem of heat conduction the small errorsWith the data (23), it is required to numerically solve
in the boundary value data will be damped when calculat-the problem (1) which possesses the analytical solution
ing the temperature inside the solution domain due to
the diffusive nature of the parabolic heat conductionT(x, t) 5 (4x 1 t/2)1/2, C(T) 5 1,

(24) equation.
k(T) 5 k2T 1 0.0625T 2.

EXAMPLE 5.3. In the third test example we consider
From expression (24) it can be seen that in order to obtain the case in which both the heat capacity and the thermal
a unique solution, k(T) should be fixed at one point, and conductivity are temperature dependent, namely,
we have set, for convenience,

C(T) 5 C1 1 C2T, K(T) 5 k1 1 k2T (27a)k(1) 5 k1 1 k2 1 k3 5 0.5625. (25)

f0(t) 5 ((1 1 8t)1/2 2 1)/2, f1(t) 5 ((5 1 8t)1/2 2 1)/2,
For the quadratic representation (23a), the Kirchhoff

T0(x) 5 ((1 1 4x 2)1/2 2 1)/2 (27b)transformation is given by

T (m)(t) 5 ((2 1 8t)1/2 2 1)/2 1 e(t), (27c)
C(T) 5 k1T 1 k2T 2/2 1 k3T 3/3. (26)

The inversion of Eq. (26) is based on Cardano’s formulae where C1 , C2 and k1 , k2 are constant coefficients to be
determined and e(t) is a random function which in the(see, for example, [30]) and the function C21(c) is then

defined as the unique root which produces positive values computation is implemented as a discrete vector of random
variables e(t9i ) 5 ei for i 5 1, NT , generated by the NAGfor the thermal conductivity.

Table IV shows the numerical results for k1 , k2 , and k3 routine G05DDF (see [32]) with mean zero and standard
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FIG. 1. The results for the boundary heat flux, namely, (a) q(0, t) at x 5 0; (b) q(1, t) at x 5 1, for Example 5.2, obtained using: (nnn) the
numerical solution with Dt 5 0.1; (hhh) the numerical solution with Dt 5 0.05; (333) the numerical solution with Dt 5 0.025; (–––) the direct
BEM solution with exact values of the thermal conductivity and Dt 5 0.025; (———) the analytical solution.

deviation si taken to be some percentage p% from the the stability of the numerical inversion method that one
has employed.absolute temperature at x 5 d at the time t9i , namely,

Table V shows the numerical results for C2 and k2 for
the time steps Dt [ h0.025, 0.05, 0.1j and no noise, i.e.,

si 5
p

100
uT(d, t9i )u, i 5 1, NT . (28) p 5 0, included in the data (27c). Although the results

obtained with the large time step Dt 5 0.1 have about an
8% relative error with respect to the analytical values, asWith the data (27) it is required to numerically solve the
the time step decreases to Dt 5 0.025 the relative errorproblem (1) which possesses the analytical solution
decreases to about 1%. The convergence is monotonic and
the same conclusion may be drawn for the objective values.T(x, t) 5 ((1 1 4(x 2 1 2t))1/2 2 1)/2,

(29) Also, the approximation of the thermal conductivity coef-
C(T) 5 C1 1 2T, k(T) 5 k1 1 2T. ficient k2 is slightly better than the approximation for the

heat capacity coefficient C2 . Further, although not illus-
From the expressions (29) it can be seen that in order to trated, the same monotonic increasing convergence of the
obtain a unique solution then C(T) and k(T) should both numerical results for the temperature at some interior do-
be fixed at one point which for the purpose of this example main points obtained using the BEM marching technique
is set to be for the time steps Dt [ h0.025, 0.05, 0.1j towards the analyti-

cal solution has been achieved. Furthermore, as the numer-
C(0) 5 C1 5 k(0) 5 k1 5 1. (30)

This quasi-linear test example was chosen in order to inves-
TABLE Vtigate the case of temperature dependent heat capacity

The Numerical Results for C2 k2 and the Objective Values forand thermal conductivity but with constant thermal diffu-
the Time Steps Dt [ h0.025, 0.05, 0.1j for Example 5.3sivity. In this case, in the direct problem the Kirchhoff

transformation (3) will reduce the problem to a linear heat
Time step Dt

conduction Eq. (5a) for which the BEM is applicable in Analytical
NT 5 10 0.1 0.05 0.025 «its exact formulation. However, in the inverse analysis the

problem still remains nonlinear during the iterative proce-
C2 1.84001 1.95069 1.98804 2dure and it is the purpose of this example to investigate
k2 1.87890 1.95899 1.99127 2

the retrieval of the linear case solution. Also, the effect of S(C, k) 0.23E-5 0.11E-6 0.79E-8 0
various amounts of noise p is investigated in order to test
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TABLE VI reasonably large tolerancy errors permitted to the experi-
mentalist.The Numerical Results for C2 , k2 , the Objective Values

S(C, k), the Time Consuming on a SUN Workstation, and the
6. CONCLUSIONSNumber of Iterations Obtained Using the Time Step Dt 5 0.025

and the Initial Guesses C2 5 0.5 and k2 5 1.5, for Example 5.3
The present study has investigated using the BEM, thewhen Various Amounts of Noise p [ h0, 2, 4, 6, 8j Are Included

nonlinear inverse problem of the simultaneous identifica-in the Measured Data T (m)(t) Given by Expression (27c)
tion of the thermal conductivity, the heat capacity, and the
temperature solution from additional time temperatureTime Number

NT 5 10 consuming of measurements taken at an arbitrary location within a
Dt 5 0.025 C2 k2 S(C, k) (in seconds) iterations heated conducting body. In comparison with the full do-

main discretisation methods, the BEM is well-suited and
Analytical 2 2 0 0 0

advantageous for discretising this class of inverse problemsp 5 0 1.98804 1.99127 0.79E-8 1033 18
since no solution domain discretisation, no interpolationp 5 2 2.09673 1.96644 0.16E-2 1131 15

p 5 4 2.17685 1.91947 0.65E-2 1724 15 on the grid cells when calculating the temperature mea-
p 5 6 2.22552 1.85020 0.14E-1 974 14 surements at arbitrary points within, or on the boundary
p 5 8 2.24009 1.75870 0.26E-1 944 15 of the heated body, no further finite differencing for ob-

taining the boundary heat flux and no fundamental distinc-
tion in the principle of implementation of the method when
changing the types of boundary conditions, are required.

ical values of C2 and k2 converge to the same value it Based on the Kirchhoff transformation and assuming that
follows that the thermal diffusivity becomes constant and the thermal diffusivity is weakly temperature dependent, a
in this case the inconsistency observed in the previous time marching BEM has been developed using an iterative
example is not present since the BEM is exactly formulated procedure. In general, the inverse identification problem
in the linear or quasi-linear cases. Finally, for Example 5.3 is ill-posed since it has no unique solution and in order to
when various amounts of noise p [ h0, 2, 4, 6, 8j are render a unique solution then additional constraints have
included in the measured data (27c), Table VI shows the to be imposed. Additional interior temperature measure-
numerical results for C2 , k2 , and S(C, k), obtained using ments are known and also the thermal properties are as-

sumed to belong to a finite-dimensional space, such as thethe time step Dt 5 0.025. Also included in this table are
the values of the computational time taken, in seconds, space of constant, linear, or quadratic polynomials. The

parameter estimation thermal properties problem has beenon a SUN workstation at the University of Leeds and
the number of iterations required for convergence by the solved by minimizing the nonlinear least-squares func-

tional, subject to certain constraints which include theNAG routine E04UCF when the initial guesses for C2

and k2 were 0.5 and 1.5, respectively. From Table VI physical quantities being positive and fixing conditions for
the unknowns. For various test examples representing heatit can be seen that the numerical estimation of the ther-

mal properties is stable with respect to the noise in conducting materials formed from alloys of steel it has
been found that the numerical method always gives anthe measured data T (m)(t) and also that this estimation

becomes better in comparison with the analytical values accurate, convergent, and stable solution for the thermal
properties’ coefficients with increasing accuracy, as theas the data T (m)(t) is known more precisely, i.e., as p de-

creases. time step decreases, as the number of time measurements
increase, and also as the measured data is known moreFor all the examples presented in this section represent-

ing various heat-conducting materials formed from alloys precisely. In addition, good estimates for the thermal prop-
erties may be obtained, provided that the time step isof steel, it was found that if the boundary temperatures

are known with a period of sampling of Dt* # 9 s and if sufficiently small, even for strong linear dependences on
temperature of the thermal diffusivity. Also, the numericalthe temperature measurements taken with a sensor in-

stalled at an arbitrary position within the material are results for the temperature inside the solution domain show
good estimates of the corresponding analytical solution.available, within tolerancies of p% # 8%, with a period

of sampling of Dt9* > 36 s, then the numerical inversion All these conclusions are even more encouraging as the
numerical inversion method produces good performancesmethod produced good and stable estimates for the un-

known thermal properties of the material and also for in estimating the thermal properties of heated materials
and the temperature solution, whilst allowing large periodsthe interior temperature solution and the boundary heat

fluxes. This concludes the fact that the numerical inversion of practical sampling measurements and reasonably large
tolerancy errors permitted to the experimentalist. Further-method produces good performance in estimating the

thermal properties of heated materials, whilst allowing more, the BEM can be extended to deal with higher dimen-
sions and nonlinear boundary conditions.large periods of practical sampling measurements and
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6. C. H. Huang and M. N. Özisik, Int. J. Heat Fluid Flow 12, 173 (1991).
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